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Resumen:

En el presente articulo se discute la simulacion de flujos en canales abiertos con frentes pronun-
ciados. Los métodos existentes en la literatura para representar este tipo de flujos son el método
de las caracteristicas, el de diferencias finitas, el de elementos finitos y el de voliimenes finitos.

Se enuncian las ecuaciones de movimiento para el flujo en canales, promediadas verticalmente
(para aguas someras) y transversalmente, haciéndose una breve discusion de las técnicas numéri-
cas. Asi mismo, se indican las condiciones iniciales y de contorno necesarias para completar la
construccion de los modelos. Finalmente las técnicas anteriores son aplicadas al analisis de algu-
nos problemas de flujo frecuentes en este campo
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tas, elementos finitos, voliimenes finitos, aplicaciones, zonas aridas, zonas semiaridas, procesos

hidroldgicos, modelos matematicos, ciclo hidrologico.

INTRODUCCION

Una onda puede ser definida como unavaria
cién espacio tempora en € calado y € cauda. Es-
tas ondas son clasificables seglin diferentes tipos:
ondas oscilatorias, cuando no existe transporte de
masa en la direccion de propagacion, y ondas de
traslacion, cuando se tiene transporte neto de mate-
ria. Unaonda que presente un frente pronunciado o
una acusada perturbacion de la superficie del agua
es usualmente conocida como bore wave?, onda de
chogue u onda estacionaria. Estas ondas, tanto de
choque como de frente pronunciado, deben ser to-
madas en consideracion parael andlisisy disefio de
flujos en canales abiertos, especialmente en el caso
de flujos de alta velocidad (flujo supercritico). S

las ondas de chogue no son tenidas en cuenta pue-
den generarse problemas tales como el desborda-
miento debido aunaaturainsuficiente de cgjeros o
aun nivel bajo de lasriberas, asi como dafios alas
diferentes estructuras hidréulicas alo largo del ca
nal. Estostipos de ondas pueden generarse tanto en
cauces naturales como en canales artificiales.
Ejemplos tipicos pueden ser observados en cauces
montafiosos, rios durante periodos de crecidas ge-
neradas tras un terremoto, deslizamientos de tie-
rras, periodos de deshiel o, fuertes precipitaciones o
roturas de presas. También se pueden generar por
apertura/cierre de compuertas de control, manio-
bras en compuertas de navegacion o ateracionesen
operaciones de desaglie (Chaudhry 1987, 1993, y
1996).
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Los flujos con ondas de choque o frentes de
onda pronunciados se caracterizan por una acusada
variacion de las magnitudes fisicas en la direccion
vertical. Los procedimientos usuales para analizar
el flujo gradualmente variado no son aplicables de
ningun modo a estos tipos de flujo, ya que no pue-
den tener en cuenta frentes de onda ni ondas de
choque. Los procedimientos para analizar €l flujo
gradua mente variado suponen unadistribucion hi-
drostética de presiones en la direccién vertical. Sin
embargo, en & caso de flujos con frentes de onda
esta smplificacion no es véida, especialmente en
las proximidades del frente (Basco, 1983). Por tan-
to, para el andlisis de flujos en lamina libre con
frentes de onda se requieren métodos especificos.

Numerosos estudios han sido Ilevados a tér-
mino para modelar € flujo con frente de onda en
canales, desarrollandose diferentes técnicas para
describir flujos bidimensionales con frentes de on-
day calados pequefios. Demuren (1979) estudio
flujos subcriticos y supercriticos, si bien la capaci-
dad del esquema numérico para representar |0s
abruptos cambios en € flujo no quedd demostrada
claramente. Bagge & Herbich (1967), Herbich &
Walsh (1972), Villegas (1976) y Dakshinamoorth
(1979) usaron el método de las caracteristicas
(MOC) parad andlisis de flujos supercriticos esta-
cionarios. Asi mismo, Katopodes & Strelkoff
(1978) usaron e MOC en e andisisde flujos gene-
rados por rotura de presas. L os procedimientos fun-
damentales del MOC no son capaces de tener en
cuenta frentes de onda acusados ni resaltos hidrau-
licos oblicuos, siendo necesarias numerosas inter-
polaciones que pueden afectar de forma adversa a
laprecision del resultado.

Garcia & Kahawita (1986), Jiménez &
Chaudhry (1988), Fennema & Chaudhry (1990),
Gharangik & Chaudhry (1996), Bhallamundi &
Chaudry (1992), Younus & Chaudhry (1993), Ra-
man & Chaudhry (1996), Meselhe et al. (1997),
Ming & Fread (1997), y Mohapatra et al. (1999)
utilizaron diferentes métodos de diferencias finitas
(FDM) con deteccion de ondas de choque paraana-
lizar flujos répidamente variados, p.e., resaltos hi-
dréulicosy flujos en rotura de presas.

Akanbi & Katopodes (1988) modelaron la
propagacion de crecidas sobre lechos inicialmente
secos usando el método de elementos finitos
(FEM). Berger (1993) present6 un esquemausando
el FEM para la deteccién de ondas de choque en
flujo en canales abiertos. Berger et al. (1995),
Stockstill (1995) y Stockstill et al. (1997) estudia-

INGENIERIA DEL AGUA - VOL. 7 - N° 4 DiciEMBRE 2000

ron el flujo bidimensional en régimen librey con
calados pequefios por medio del FEM.

Bellos et al. (1991), Tan (1992), Alcrudo &
GarciaNavarro (1993), Zhao et a. (1994) y Zhao
et d. (1996) aplicaron € método de volimenes fi-
nitos (FVM) a caso de flujos bidimensionales con
calados pequefios y frentes de onda pronunciados.
Este articulo esta dedicado principalmente a resu-
mir y comparar todos estas técnicas.

ECUACIONES DETERMINANTES
Ecuaciones promediadas verticalmente

En numerosas situaciones, la consideracion
de flujo unidimensional no es valida, debiendo ser
consideradas las componentes en las otras dos di-
mensiones, p.e., en el caso del flujo aguas debajo
de una presafracturada, en diquesrotos, en resaltos
hidraulicos circulares y oblicuos, ensanchamien-
tos/contraccionesrectaso circulares, etc. Aunque el
flujo en estas Situaciones es tridimensional, su ané&
lisis puede ser simplificado usando magnitudes
promediadas verticamente y tratando el problema
como un flujo bidimensional en la direccién hori-
zonta.

Las ecuaciones de Saint-Venant describen el
flujo bidimensional no estacionario promediado
verticalmente. Dichas ecuaciones representan los
principios de conservacion delamasay de la canti-
dad de movimiento, estando obtenidas a partir de
las ecuaciones de Navier-Stokes bajo ciertas sim-
plificaciones; p.e., Baker (1983) y Chaudhry
(1998).

En términos de las variables fundamental es
del flujo h, uy v, las ecuaciones de Saint-Venant en
forma conservativa pueden ser escritas vectorial-
mente como sigue:

0E_ OF
v +—24+-—Y4+85=0 (1)
ot 0x dy
donde
h ufi vh
U=\|uh| E, = u2h+§gh2 F = uvh
vh uvh vih+ %gh2
0
S=|-gh(S,. - Sg) @)
~gh(S,, - S;)
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enlasquet esel tiempo; uy v son las componentes
del vector velocidad del flujo enlasdireccionesx e
y (direcciones longitudinal y transversal); h esla
profundidad del agua medidaverticalmente; g esla
aceleracion de lagravedad; S y S,, son las pen-
dientes delasoleraen las direccionesx ey; S,y S,

son las pendientes de friccion en las direcciones x e
Y,y X ey son las variables del sistema coordenado,

tal como se muestraen laFigural. E y F, son los
denominados vectores de flujo; U es € vector de
las variables dependientes y S es e vector fuente.
Las pendientes de friccion S, y S, pueden ser cal-
culadas usando las formulas para regl men estacio-

nario:

_ nzu\/uz + v2 X S = n2v\/u2 + v2 3)
en laque n=coeficiente de rugosidad de Manning y
C,=factor de correccion de unidades (C =1 en uni-
dades S y 1.49 en Unidades Inglesas). Las varia-
bles independientes en las ecuaciones de Saint-Ve-
nant son (x,y,t). Si e flujo es estacionario (constan-
teen el tiempo), lostérminos no estacionarios dela
ecuacion pueden ser despreciados, adoptando la
forma

0E_ OF
L+ —21+S5=0 @
ot ay

Ecuaciones promediadas transversalmente

En algunos casos especiaes, la variacion de
los parédmetros del flujo en la direccion vertical es
mayor y més importante que la variacion en la di-
reccion transversal, p.e., en e resalto hidraulico o
en las ondas de choque en canales de ancho unifor-
me. En tal caso, las ecuaciones determinantes pro-
mediadas transversalmente pueden ser usadas para
modelar estos tipos de flujo. Las ecuaciones pro-
mediadas transversalmente pueden ser escritas en
forma conservativa como sigue (Chaudhry, 1996):

oU OE, OF
+ +—=Z

= 248=0 (5)
ot ox 0z
donde
5 Uh
,E_=|U?B+gBh-B(h+z,) ﬂ
WB BUW
0 0 (6)
BUV , S=|-gBS,
e - -~ aw —oR
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Figura 1. Coordenadas del flujo en canal.

en lasque U y W son las velocidades promediadas
transversalmente en las direcciones longitudinal y
vertical (direcciones x y z respectivamente); y B es
ancho del canal. De acuerdo con lateoriadelas Ca-
racteristicas, la ecuaciones de Saint-Venant son hi-
perbolicassi @ flujo es supercritico (F >1), parabo-
licassi @ flujo escritico (F=1) y elipticassi € flu-
jo es subcritico (F <1), (Jiménez & Chaudhry,
1988).

Las ecuaciones de Saint-Venant (1), (4) y (5)
son ecuaciones diferenciales parciaes no-lineales
de primer orden, paralas que no existen soluciones
analiticas (excepto para problemas de flujo unidi-
mensional muy simplificados), de manera que son
necesarias las soluciones numéricas (Chaudhry,
1993). Tal como se ha comentado anteriormente,
existen diversos métodos numéricos (MOC, FDM,
FEM y FVM) para modelar flujos bidimensionales
con calados pequefios y frentes de onda acusados.
Algunos de estos métodos son revisados en las si-
guientes secciones, comentandose una serie de
glemplos. Debe ser destacado que no existe un Uni-
co procedimiento paratodos los problemas, de ma-
nera que la eleccion del método a utilizar depende
del buen criterio del usuario (Pepper & Baker,
1988).

TECNICAS DE RESOLUCION NUMERICA
Método de las Caracteristicas

El método de las Caracteristicas (MOC) es €
primero que se utilizo parala simulacion de diver-
sos problemas de flujo. Monge desarroll6 €l proce-
dimiento grafico para la integracion de ecuaciones
diferenciales parciales en 1789, y llamé a dicho
procedimiento método de las Caracteristicas. Fue
usado por Massau (1889) y Craya (1946) paraana
lizar sobreel evaciones en canal es abiertos e investi-
gar lapropagacion de crecidasy otros problemas de
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flujo no estacionario. Aunque es considerado como
un método convencional para el andlisis de transi-
torios en conductos cerrados, su aplicacion a caso
de canales abiertos es cas insignificante, habiendo
sido reemplazado por los otros métodos (FDM,
FEM, FVM), (Chaudhry, 1993). Los detallesde es-
te método pueden ser consultados en Chaudhry
(1993) para € flujo unidimensional, y en Katopo-
des & Strelkoff (1978) para € flujo bidimensional
con calados pequefios.

Método de Diferencias Finitas

El método de diferencias finitas (FDM) pre-
sentado por Lax & Wendroff (1960) en genera es
para resolver las ecuaciones determinantes de los
problemas de flujo bidimensional no estacionario
(ecuaciones de Saint-Venant). Existen diferentes
modelos numéricos para el FDM. Estos modelos,
genera mente conocidos como model os de dos pa-
s0s (secuencia de prediccidn-correccion), son apro-
Ximaciones espacio-temporales de segundo orden
basadas en desarrollos en serie de Taylor hasta se-
gundo orden.

Se han desarrollado diferentes esquemas de
diferenciasfinitasimplicitosy explicitos paralare-

solucion de las ecuaciones de gobierno. Algunos de
ellos son capaces de simular flujos tanto subcriticos
como supercriticos, (Chaudhry, 1993). En aras de
la brevedad de este trabajo se discuten dos esgque-
mas. uno explicito y otro implicito. Los detalles
completos de ellos pueden ser consultados en
Chaudhry (1993).

Lanotacion utilizada paralamallade diferen-
ciasfinitasen (x,y,t) semuestraen laFigura 2. Las
direcciones x ey se designan por los subindicesi y
j respectivamente, mientras que e subindice k re-
presenta a tiempo. El instante en &l que todas las
variables son conocidas se representa con € supe-
rindice k, mientras que @ instante incognita se re-
presenta con k+1. EI nimero total de nodos en
(x,y,t) son N+1, M+1y K+1 respectivamente.

Modelo de MacCormack

El modelo de MacCormack es un esquema
explicito en diferencias finitas. Consiste en una se-
cuencia de prediccidn-correccion de dos pasos. Las
siguientes ecuaciones en diferencias pueden ser
aplicadas para aproximar las ecuaciones de Saint-
Venant (ec. 1) pararégimen no estacionario prome-

)4

.

/ - )Ak
V.

\
\

Figura 2. Malla de diferencias finitas (Referencia: Chaudhry, 1993).
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diadas verticalmente. Los términos de prediccion-
correccion estén definidos del siguiente modo:

At At 2<isN
* _ 17k _ k _ k _ A¢+.Qk
Uiy =V~ Vol Ay V,F ;- ArS; {2 <j<M U
sk * * * 1 ] N—l
U -uk - Ma g AR oast [ F0E ®)
[ [ Ax X LJ Ay yonj 5J 1< jSM—l

El valor final del vector de variables depen-
dientes U en €l nuevo instante k+1 puede calcular-
seapartir de:

1
kel _ L oprx -
Uij = > U, +U;)) ®)

El esqguemausalas diferencias espaciales pre-
vias (Vx,vy) en € término de prediccion, y diferen-
cias espacia es posteriores (Ax,Ay) en € término de
correccion. Los operadores de diferencia previay
posterior se definen como:

Time step K+2

Figura 3. Secuencias de diferenciacion (Referencia: Chaudhry, 1993).

CON PENDIENTES FUERTES

AU, =U, -U, AU, =U

x7 i, i+l,j ~ Vi

VU, =U,-U,

ij i-1,j

i1 =Yy

V,U,, =U, -U,

ij i,j-1

(10)

El término de correccion usaincrementos ha
ciad lado opuesto que los utilizados por € término
de prediccion, debiendo ser alternados en cadain-
cremento detiempo, Chaudhry (1993). LaFigura3
muestra las secuencias de incrementos. Con esta
secuencia se reducen la mayoria de las desviacio-
nes direccionales del esquema.

En & caso de las ecuaciones de Saint-Venant
(ec. 4) pararégimen estacionario promediadas ver-
ticalmente, los términos de correcciény prediccion
para el modelo de MacCormack se escriben de la
siguiente forma:

* Ax 2<i=<N
E . =E . -—F,  -F )-AS, . )
5J 5] A)C 5] 5] 5] ZSJSM
- Ax . . . [I=sisN-1
E . =E  -—(F -F.,)-AxS.
i,j BloAx S W i-1,j Lj lstM—l

i+1,j

P

ij-1

Time step K+1

Time step K+3
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1 * *k
y E = E(Ei’j +E) (13)

Estabilidad

La estabilidad de un modelo numérico puede
ser analizada comprobando s un error crece o de-
crece a medida que el proceso resolutivo avanza.
No se dispone de métodos para estudiar |a estabili-
dad de la solucion numérica de ecuaciones diferen-
ciales no lineales en derivadas parciales. No obs-
tante, laestabilidad puede ser estudiada desprecian-
do o linealizando los términos no lineales,
(Chaudhry, 1993).

La condicion de Courant-Friedrichs-Lewy
(CFL) debe ser satisfecha paraque € modelo ante-
rior sea estable. La condicién CFL para las ecua
ciones de Saint-Venant (ec. 1) no estacionarias pro-
mediadas verticalmente puede escribirse (Ander-
son et al., 1984):

Ax

C =\ — =<1 (14)

n max |

donde |A | representa el maximo absoluto de la
pendiente caracteristica, y C_ es el denominado nd-
mero de Courant. El méximo absoluto de la pen-
diente caracteristicaA__ puede ser deducido a partir
delasiguiente expreson (Anderson et ., 1984):

2 —
A - |uv|+gh\F7 -1 (15)

max uz —gh

Anderson et al. (1984) recomiendan € uso de
un vaor del nimero de Courant C_ tan grande co-
mo sea posible paralograr el minimo error de trun-
cado en el modelo de MacCormak.

Modelo de Beam y Warming

Los modelos de Beam y Warming son esque-
mas implicitos no iterativos de incrementos finitos
propuestos por estos autores (1976) para resolver
sistemas hiperbdlicos en forma conservativa. Los
esguemas estan constituidos por aproximaciones
temporales de segundo orden, pudiendo hacerse
aproximaciones de segundo o cuarto orden parala
parte espacial . Las derivadas espacial es son aproxi-
madas usando derivacion central. La ecuacion (1)
puede ser resuelta usando las aproximaciones de
incrementos de tiempo en la siguiente forma:
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INEIAN 6
1+&\ ot (16)

enlaque 0y & son parametros que conducen a di-
ferentes esquemas segun su valor (véanse detalles
en Chaudhry, 1993). La sustitucion de (0U/ot) a
partir de (1) en términos de los vectores de flujo y
del vector fuente conduce &
0 (0E OF

——+—+
1+§ ( ox

k
1-0 (0F oF ¢
1+&

k+1

S) +

k-1
LB (U
1+E\ ot

Los vectores de flujo y € vector fuente en €

instante k+1 pueden hacerse lineales usando un
desarrollo en serie de Taylor local. El desarrollo
hasta segundo orden de estos términos puede escri-
birsedelasiguienteforma(usando laregladelaca
denay el desarrollo de Taylor):

Ek+1 =Ek +Ak(Uk+1 _Uk)

FEL_Frk 4 BEURL -UF) (18)

Sk oW -U¥)

donde A¥, B¥, y Q son los Jacobianosde E, Fy S
respectivamente:

U =U* - At

(17)

ox dy

k k k
Ak=aE , Bk=£, Qk=£(l9)
oU U oU

Pasando las variables dependientes evaluadas
en e instante posterior a miembro de laizquierda
puede formarse un sistemalineal para U

k k
I +At o (o4 +8B +OF |[Ut -
1+E| ox ay

- (20)

k k
[+nr 9 (947, 9B +0F
1+E({ ox dy

en donde | eslamatriz unitaria. El vector U hade
ser evaluado dentro de losinterval os de derivacion.
Puesto que los términos entre corchetes aizquierda
y derecha son idénticos, € operador de diferencia
finita posterior (AU *=U*1-U¥) puede utilizarse
paraescribir (ec. 20) en laforma

k k
I+ At b (94 +aB +Qk
1+E | ox ay

Uk

AtUk+1 =

| (3E oF k £ (21)
=—At—(—+ —+S) + =—AU*

1+E{ox oy E+1
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Este algoritmo se dice que estaen forma*“del-
ta’; lasvariables de flujo, U, existen solo como in-
crementos de U entre cada dos interva os de tiem-
po. Laprincipal ventsja de estaformulacion radica
en la eficiencia de célculo generada por la reduc-
cién del nimero de términos. Una resolucion més
eficaz se logra factorizando el miembro de laiz-
quierda en la ecuacion 21, obteniéndose lo que se
denominan esquemeas factorizados (véanse detalles
en Chaudhry, 1993).

Viscosidad artificial

En muchos esquemas de diferencias finitas de
segundo orden, se tienen oscilaciones de alta fre-
cuencia cerca de los gradientes fuertes debido a
errores de dispersion (errores de truncgje) por cau-
sa de laintegracion numérica. Por ello puede ser
necesario afiadir explicitamente un término amorti-
guador para atenuar estas oscilaciones. El procedi-
miento usado frecuentemente en el pasado para
amortiguar |as oscilaciones fue desarrollado por Ja-
meson et al. (1981). La ventgja de dicho procedi-
miento cons ste en que suavizalas regiones de fuer-
tes gradientes y deja las éreas de gradientes suaves
sin modificar. En el caso delas ecuacionesde Saint-
Venant no estacionarias promediadas verticalmen-
te, se afladen términos disipadores artificiaes.

Método de Elementos Finitos

El método de elementos finitos (FEM) es una
técnica alternativa para resolver la ecuacién de
Saint-Venant promediada verticalmente. La princi-
pal ventgja del método de elementos finitos FEM
respecto al FDM es su capacidad paratratar contor-
nosirregularesy regjustesen lamalla, mientrasque
lamalade clculo utilizadaen el FDM esta defini-
da por lineas paralelas, usualmente a interval os
iguales. Cercade contornosy regiones con cambios
bruscos se requiere un espaciado de malla mas pe-
quefio. Laformulacion del FEM generalmente im-
plicalos siguientes pasos (Baliga & Patankar,
1988): discretizacion del dominio en elementos,
prescripcion de las funciones de interpolacion de
cada elemento para las variables dependientes
(también llamadas funciones de forma o funciones
base), derivacion de las ecuaciones de discretiza-
cion usando el principio variacional o e método de
formulacion de residuos ponderados, recopilacion
de las ecuaciones discretizadas elemento por ele-
mento, y solucion de las ecuaciones discretizadas
(Chaudhry, 1998).

El dominio de la solucién del FEM se divide

CON PENDIENTES FUERTES

en una malla de elementos. Estos elementos se
componen de patrones de puntos de malla (nodos).
Las variablesy parametros de cada ecuacion dife-
rencial son interpolados dentro de cada elemento
mediante un polinomio. Los elementos finitos pue-
den ser uni-, bi- o tridimensionales. En este articu-
lo solo son considerados |os € ementos bidimensio-
nales, tal como muestrala Figura 4.

Figura 4.

'

(a) Coordenadas locales y globales en un elemento cuadrangular
lineal (Referencia: Chaudhry, 1993).
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(b) Malla de elementos finitos (Referencia: Chaudhry, 1993).

Laformade los elementosfinitos bidimensio-
nales es generalmente triangular o rectangular, aun-
que pueden ser afiadidos nodos adicional es para asi
crear elementos de orden superior con una mayor
velocidad de cambio de las variables. Las funcio-
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nes de forma pueden ser lineales, cuadréticas o de
orden superior. Las funciones lineales pueden usar-
se cuando los elementos son suficientemente pe-
quefios. Se requiere una transformacién de coorde-
nadas para pasar de coordenadas locales a coorde-
nadas globales para los e ementos cuadrangulares.
Son preferibles|as funciones de formade orden su-
perior cuando las variables cambian rapidamente.
Se usan interpolaciones mixtas para resolver las
ecuaciones de Navier-Stokes. La velocidad se in-
terpola mediante una funcion de forma cuadrética
mientras que la presion seinterpola dentro del mis-
mo é&rea usando una funcién de forma lineal, dado
que e uso de interpolaciones de igual orden da lu-
gar a un conjunto de ecuaciones irresolubles
(Chaudhry, 1993, 1998). Las condiciones de com-
pletitud y compatibilidad han de satisfacerse de
modo que e método de elementos finitos converja
alasolucion correcta (Lee & Froehlich, 1986).

Las ecuaciones diferenciales han de ser trans-
formadas en ecuaciones integrales para poder ser
resueltas. Se dispone de tres aproximacionesde ele-
mentos finitos para este fin: directa, variaciona y
por € método de |os residuos ponderados. Los mé-
todos de residuos ponderados son generales y fun-
cionan correctamente cuando |os otros métodos fa-
llan. El método de Galerkin esel més ampliamente
usado de todos los métodos de residuos pondera-
dos. Dicho método fuerza a que € error de aproxi-
macion sea cero (detalles en Chaudhry, 1993).

Stockstill et a. (1997) aplicaron latécnica de
elementos finitos para resolver las ecuaciones de
Saint-Venant no estacionarias promediadas verti-
camente en forma conservativa en canales de alta
velocidad teniendo en cuenta las tensiones turbu-
lentas:

oF
£+ﬂ+—y+H =0

(22)
ot 0x dy
§ lp h
p 2
, =|"—+—-gh*-—0C
p x 7 2g p o
q
pq_h
h p ¥
p 0
pqg h 9z, n’p\p?+q?
—=-—0, , S=|gh—+g—mm——
h p ¥ ax z
C§h3
1 ., &
+—-gh*-—0o, 2 [ 2, 2
2 p ”_ gh(zz—°+gnq p 7""1
C2n?
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d

ou v
23 4y |H+(—E+—2)0|ldQ, +
! ox  dy

endondepy gson e caudal por unidad de ancho en
las direcciones x ey respectivamente, C, es 1.0 en
el S,y 1.486 en las unidades U.S. usuales, y ( son
las tensiones turbulentas. Las ecuaciones determi-
nantes para un sistema fijo de coordenadas fueron
expresadas en términos de un marco de referencia
movil definiendo un nuevo conjunto de variables
independientes (§, n, T) como sistema coordenado
movil relacionado con € sistema de referenciafijo
(X,y,t). Laderivada temporal de las variables Q del
flujo evaluada en el sistemade referenciamovil es:

% _0,, 0, 0
ot ot 0x ay
donde u, y v, son las velocidades en €l sistema de

referencia movil en las direcciones x e'y. Sustitu-
yendo en (22) se obtiene:

00 | oF
at  ox

(24)

a *
—2 +H +Q( r +6vr
ay

+

) =0 (25

enlaqueF, =F-uQyF =F-vQ.

Stockstill et a. (1997) usaron la formulacion
de Petrov-Galerkin, que incorpora una combina-
cion del test de funcion de Galerkin y un compo-
nente no de Galerkin paracontrolar las oscilaciones
numéricas. La velocidad de referencia se tomo co-
mo la velocidad de lamallaV =V =(u v ), siendo
calculada a partir del nivel de desplazamiento no-
dal. Lageometriay lasvariables seinterpolan usan-
do funciones base de Lagrange:

O(x,y:1) = 30,(x,)0,@)
J

5(x,y1) = S0, 2)s, @)
J

(26)

donde @ es lafuncion base, j eslaposicion del no-
doy sesd vector desplazamiento del nodo, defini-
do como:

s=|s|6=(|s|6x,|s|8y) (27)
siendo |5 € moédulo del vector desplazamientoy
el vector unitario. Una forma simplificada de la
ecuacion para elementos finitos es:

f{ 00 _ 1o 00, _ e 00,

*

aFy )

* oF
O _ I Galt
"o Y oox 7 " oox y

dy

(28)

f¢,~(Fx*nx + Fy*ny)dre) =0 para cada i
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enlaque eindicaun e emento dado, | indicaun no-
do dado y n:(nx,ny) es el vector unitario dirigido
perpendicularmente hacia €l exterior del contorno
.. Lafuncion de prueba se define como:

P, =0, +0, (29)

donde @ es € término de Garlerkin, ¢, es el térmi-
no no de Garlerkin e | eslamatriz unidad.

Stockstill et a. (1997) smplificaron la ecua
cién (28) desarrollando lostérminos delamatriz de
la cantidad de movimiento y evaluando las deriva
dasdeF 'y F ' con respecto as. Después de estas
operaciones, {a descri pcion simplificada en ele-
mentos finitos de las ecuaciones para aguas some-
ras se transforma en:

00 « 00, « 00
(—+H)-F —-F —+
g(g{{w’(at ) Fy ox Y ay
« 0 x 0
Q,G+y (4 —Q+B —Q) Q, + (30)
ox ay

§o,(F.n, +Fyny)aTe) =0 paracadai
con

\%
_g)Q (31)
%

du d
G=(—%+
ox
Debe sefidlarse que & modelo sereduce auna
formulacién de elementos finitos de mallafija con-
venciona s 1os nodos no se mueven. Ademas, se
usaron diferenciasfinitasimplicitas paraaproximar
las derivadas temporaes del vector de variables Q.
El sistema resultante de ecuaciones no lineales se
resuelve utilizando €l método iterativo de Newton-
Raphson. Los dominios del calado, la velocidad y
el flujo son resueltos s multéneamente. Las coorde-
nadas de los nodos méviles son actualizadas en ca-
daiteracion , de manera que €l jacobiano de New-
ton-Raphson para el desplazamiento nodal se deri-
ve adecuadamente. Aunque este modelo fue des-
arrollado para la simulacion del flujo bidimensio-
nal en canales trapezoidales de alta velocidad, la
formulacién por elementos finitos puede aplicarse
al flujo con gradientes fuertes usando las condicio-
nes de contorno apropiadas.

Método de los Volimenes Finitos

El método de los volumenesfinitos (FVM) es
considerado como una técnicarel ativamente nueva

CON PENDIENTES FUERTES

para resolver las ecuaciones determinantes en la
forma de derivadas parciales. Segun fue discutido
por Tan (1992), Zhao et a. (1994) y Zhao et al.
(1996), e FVM presenta algunas ventajas respecto
a los otros métodos (MOC, FDM y FEM). Puede
ser aplicado a cualquier malla sin estructura prede-
terminada, al igua que el FEM, pero requiere me-
nos esfuerzo de calculo queel FEM. Ene FVM, se
puede construir féacilmente un esquema de manera
gue tenga en cuenta ondas de choque y frentes de
onda pronunciados, ya que esté basado en laforma
integral de las ecuaciones de conservacion. El
FVM trata los problemas bidimensionales como
una serie de problemas unidimensionales locales,
dando lugar aun simple, pero preciso, algoritmo de
céculo eficiente, Zhao et a. (1996).

En la formulacion de volumenes finitos, las
ecuaciones de discretizacion (que son las agebrai-
camente opuestas a las ecuaciones diferenciaes) se
derivan por integracion de las ecuaciones diferen-
ciaes de gobierno en una pequefia region del flujo
[lamada volumen finito (FV) o volumen de control
(CV). Lasvariables dependientes, talescomo lave-
locidad o la presién, son evauadas en puntos dis-
cretos, a cada uno de |os cuales se le asocia un vo-
lumen de control. Tales puntos se denominan pun-
tos de malla. El dominio del flujo debe ser subdivi-
dido en volimenes de control y han de definirselos
puntos de malla asociados. La Figura 5 muestra
una malla de volumen finito para un dominio rec-
tangular bidimensional. Las lineas a trazos repre-
sentan |as caras de |os volumenes de control, te-
niendo cada uno su punto de malla correspondien-
te, que usualmente se sitla en € centro geométrico
del elemento de volumen finito. Cada punto de ma-
lla se comunica con € resto de puntos de la vecin-
dad (E,W, Ny S) atravésdelascuatro carasdel vo-
lumen de control. Como se hadicho antes, las ecua-

Figura 5. Volimenes de control y malla (Referencia: Chaudry, 1998).
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cionesdiferenciales de gobierno deben ser transfor-
madas en ecuaciones algebraicas mediante lainte-
gracion en todo € volumen de control. Las ecua-
ciones resultantes son las denominadas ecuaciones
de discretizacion, las cuales relacionan las varia
bles independientes en cada punto de mallacon las
de los puntos vecinos. Las ecuaciones de discreti-
zacion congtituyen un conjunto de ecuaciones line-
aes, 0 al menos nominalmente lineales, conlosva
lores de las variables dependientes en |os puntos de
malla como desconocidas. Las ecuaciones pueden
ser resueltas por un método directo, como la éimi-
nacion Gaussiana para problemas unidimensiona
lesy por método iterativo para problemas bidimen-
sonaesy tridimensionales (Patankar et al. 1998).

Zhao et a (1996) aplicaron & FVM parare-
solver las ecuaciones determinantes de problemas
bidimensionales con calados pequefios y compara-
ron tres métodos diferentes de resolucion. Las
ecuaciones determinantes bidimensionales en for-
ma conservativa paraaguas poco profundas fueron
expresadas como:

99, (g, 9(q)

=b (32)
ot 0x dy @
; uh
wl  f@)=|uwhe g |
vh uvh
vh 0
33
wh |, b(g) = | gh(S, - S ;) .
v2h+%gh2 gh(S,,-S,)

L as ecuaciones determinantes fueron integra-
das sobre un elemento arbitrario _, siendo obtenida
la siguiente ecuacion base d aplicar €l teorema de
ladivergencia

[L9.do = - [F(q)ndL + [[,b(g)dw (34

enlaquen esd vector unitario normal ala superfi-

ciedQ,y dwy dL son los elementos de &reay arco

respectivamente. El vector desconocido g se supo-

ne que es constante sobre el elemento tomando pre-

cision hasta primer orden. Discretizando la ecua-

cién (34) se obtiene lafuncion base del FVM:
A% ==Y F/(q)L’ + Ab(q) (35)

Jj=1
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dondeA esel &readel elemento, m esel nimero to-
tal de carasdel mismo, j esel indice paracada cara
del elemento, L eslalongitud delacaraj-ésmadel
elemento y b(q) € término fuente. Basdndose en la
propiedad de invariancia rotaciona de f(g) y 9(g),
en cada cara de los elementos, Spekreijse (1988)
derivo lasiguiente relacion:

F(q)=T(®)" f(q) (36)

siendo @ e angulo entre e vector ny e ge x me-
dido en el sentido antihorario desde &l gex (ver Fi-
gura6),y T(®P)y T(P)?!sonlas matrices detrans-
formacion y su inversa respectivamente. La ecua-
cion (35) puede ser escritaen laforma:

4% _ S T@) f@)L + Ab(g) 6D
dt =1

Zhao et a. (1996) aplicaron trestipos dere-
solvedores de Riemann para solucionar las ecua-
ciones determinantes discretizadas obtenidas de la
formulacién del FMV. Estos tres resolvedores son:
Separacion del Vector de Flujo FVS (Steger &
Warming, 1981), Separacion de Diferencia de Flu-
jo FDS (Roe 1981, y Glaisster 1988), y e modelo
de Oscher (Oscher & Solomone 1982, Spekreijse
1988, Tan 1992, y Zhao et a. 1994). Los detallesde
estos model os de resolucion pueden ser consulta
dosen Zhao et a. (1996).

Yy A

Figura 6. Geometria del volumen finito ( (Referencia: Zhao et al., 19906).
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Condiciones iniciales y de contorno

L as técnicas numéricas previamente expues-
tas determinan lasincognitas en los puntos de malla
interiores. Pero lasolucion hade ser especificadaen
los contornos. La solucion numérica de cual quier
problemarequiere ladefinicion delasolucion en e
dominio del contorno, que es 1o que se denomina
condiciones de contorno. Asi mismo, se requiere
una solucion inicia a partir de la cua comenzar €
célculo. Esto eslo que sellamalacondiciéninicial.
El éxito de cuaquier aplicacion numérica depende
de la seleccion de las condiciones iniciales y de
contorno apropiadas para €l problema en cuestion.
Cualquier error introducido en los contornos es pro-
pagado y reflgjado através del dominio de calculo.

Lascondicionesinicialesespecificantodaslas
incdgnitas en todos | os puntos de malla para el ins-
tante inicial de tiempo. Para un flujo no estaciona-
rio bidimensional, los calados y velocidades del
flujo (h, uy v) han de ser especificadas en todos0s
puntos de malla. Estos valores pueden ser deduci-
dos apartir del andisisde flujo estacionario.

Las condiciones de contorno se definen de
acuerdo con €l problema simulado. Cada problema
de flujo tiene unas condiciones de contorno Unicas.
El contorno de pared solida debe ser especificado
para todos los problemas de flujo. Considerando
los lados del canal como sdlidos, (p.e., desprecian-
do laerosion o la sedimentacién en el caso de cau-
ces naturales con contornos erosionables), lacondi-
cién de no deslizamiento se usa como condicion de
contorno para una pared solida.

Debe destacarse que es muy frecuente simular
lamitad del sistema simétrico por medio de un con-
torno apropiado situado en un plano de simetria. El
contorno simétrico es similar ala condicién de pa-
red sdlidaen € sentido de que lavelocidad normal
respecto al plano de simetriaesigua a0, pero la
condicién de no deslizamiento no es aplicable en
ese caso. Se requiere que los gradientes perpendi-
culares de todas | as variables con respecto a plano
de simetria se anulen.

APLICACIONES TIPICAS

La mayor parte del material de esta seccion
esta tomado de publicaciones relevantes, tal y co-
mo se indica en cada subseccion.

Flujo de rotura de presa
El problema de hipotética rotura de una presa

h (m)

CON PENDIENTES FUERTES

fue resuelto por Fennema & Chaudhry (1990)
usando el FDM vy por Zhao et a. (1996) usando el
FVM. El dominio de calculo esta formado por un
cana de 200m de largo y 200m de ancho. La rotu-
ra esté el egida intencionadamente para que nos sea
simétrica, con 75m de ancho para asi demostar que
el andlisis es genera.. Se supone que la presatiene
un calado finito (10m en ladireccién del flujo). Los
contornos se toman paraelos a los ges coordena
dos. El falo de la presa se supone instanténeo. Se
considera que e cauce de aguas abgjo tiene un ca-
lado finito. Esto e lo més usua en aplicaciones en
las que un control aguas abajo mantiene e cauce
con agua. El cauce seco puede ser simulado usando
un calado muy pequefio. LaFigura 7 muestrael es-
quemade definicidn y las condicionesiniciaes del
problema.

Figura 7. Esquema de definicién y condiciones iniciales para la rotura

parcial de presa (Referencia: Chaudhry, 1993).

0 ——x(m) 200
1,1 11,1
\ 19,7 21,7
E
>
19,22 21,22
1,41 41,41
200

(a) Esquema de definicién

10.0[*

5.0

X (m) 200

(b) Condiciones iniciales
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Fennema & Chaudhry (1990) resol-
vieron € problema descrito usando e FDM. A ta
efecto se usd e modelo de MacCormack paratal
propdsito. La esquina con angulo de 90° impone
una condicion muy severaen los modelosy en los
contornos. Debe sefialarse que las ecuaciones de
gobierno pueden no ser validas en las cercanias del
bore formado debido a las fuertes curvaturas. No
obstante, |os resultados obtenidos, tales como los
niveles maximos de agua, tiempo de llegada de la
onda, etc., pueden ser usados con una cierta seguri-
dad para aplicaciones tipicas de ingenieria, incluso
aungue los detalles del bore en si mismo no sean
modelados de manera rigurosa. La malla es de 41
por 41 puntos, lo que da lugar a un tamafio de ma-
llaindividua de 5m por 5m. Para evitar cualquier
amortiguamiento en los términos fuente se usd un
canal horizontal sin friccion, y las condiciones ini-
ciales presentaban una relacion nivel aguas
abajo/embalse de 0.5 en las primeras iteraciones.
Las condiciones ddl flujo fueron analizadas paraun
amplio rango delos pardmetros deflujo, talescomo
pérdidas por friccidn (coeficiente de Manning entre
n=0y n=0.15), suponiendo un canal inclinado
(pendiente del fondo entre 0 y 0.07), diferentes re-
laciones cal ados/profundidad de embal se, roturasi-
métricay asimétrica, etc.

Las condiciones de flujo se calcula-
ron para 7.1 segundostras laroturade lapresa. En
ese instante, el bore estd bien desarrollado en la
parte central del caucedeaguasabgjo, y € frentede
onda ha acanzado una de las riberas del cana. Se
presentan solamente |os resultados de una smula-
cién paraahorrar espacio, correspondientes d final
del intervalo de simulacion.

Se usan dos tipos de figuras para pre-
sentar losresultados. El primer tipo esun gréfico en
perspectivadelasuperficiedel aguaen el quelaes
cala vertical ha sido aumentada con respecto a la
horizontal. El segundo tipo corresponde alarepre-
sentacion del vector velocidad. En cada nodo, la
velocidad se representa por una flecha cuya longi-
tud indica lamagnitud del vector (no son represen-
tadas velocidades inferiores a una tolerancia espe-
cificada). LaFigura 8 (ay b) muestralas vistas en
perspectiva de la superficie del aguaen e caso de
condiciones de contorno correspondientes a rotura
smétricay asmétrica. El perfil cercadelos contor-
nos, especialmente en la zona del embalsg, ilustra
ladiferencia entre las dos condiciones de contorno.
Pueden observarse |las oscilaciones debidas a erro-
res de dispersion. La solucion puede suavizarse
mediante la adicion de viscosidad artificial sin que
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Figura 8. Resultados del problema de rotura de presa usando el
modelo de MacCormack (Referencia: Fennema & Chaudhry, 1990).

10.0[=

h (m)

4.42

10.0

h (m)

4.87

(b) Condicién de contorno simétrica sin viscosidad artificial

por ello el se vea afectada la calidad del perfil (Fi-
gura 8-c). LaFigura 8-d muestralos vectores velo-
cidad calculados. Ademés de eliminarse las oscila
ciones en las cercanias del bore, la viscosidad arti-
ficial reduce la separacion cerca de las esquinas
bruscas.

10.0 }¢ )
N
S
e
h (m) h:l'!';.
m
\/ l”’
5.0
x (m) "200
200

(c) Condicién de contorno simétrica con viscosidad artificial anadida

Zhao et al. (1996) resolvieron € mismo pro-
blema que Fennema & Chaudhry (1990) usando el
FVM. Lamalla consistia en una malla rectangular
de 40 x 40 elementos y € paso computaciona de
tiempo era de 0.2 segundos. Las Figuras 9y 10



SIMULACION DE FLUJOS EN CANALES ABIERTOS
CON PENDIENTES FUERTES

muestran las perspectivas tridimensionales del per-
fil superficial del aguay los gréficos del campo de
sl vel ocidades respectivamente, para los tres tipos de
TR resolvedores de Riemann (FVS, FDS, y € modelo

e de Osher) a final del intervalo de simulacion (7.2
ikt segundos después de larotura de la presa). Losre-
e e e sultados estan en total acuerdo con los obtenidos
Sosesiaseie por Fennema & Chaudhry (1990), y también con

S losdeAlcrudo & Garcia-Navarro (1993).

y (m)
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sreevardann
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Simulacion del resalto hidraulico

Gharangik & Chaudhry (1991) simularon un
2000 ' 200 resalto hidraulico en un canal rectangular usando el

X (m) FDM. Resolvieron las ecuaciones de Boussinesq

mediante & modelo 2-4 desarrollado por Gottlieb &

(d) Campo de velocidades del flujo Turkel (1976). Las ecuaciones de Boussinesq son

Figura 9. Campo de velocidades para el problema bidimensional de rotura de presa (Referencia Zhao et al. 1996).
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(c) Usando el modelo de Osher 0
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Figura 10. Representaciones del contorno y de la superficie tridi-
mensional del agua mostrando la distribucién de calados para el
problema tridimensional de rotura de presa (Referencia: Zhao et
al., 1996).

\\\ N
W \\‘
‘ ) \\

(b)
(b) Usando el FDS

(c) Usando el modelo Osher (c)

ecuaciones del flujo gradualmente variado, las cua-
lesincluyen términos adicional es quetiene en cuen-
ta la distribucion no hidrostética de presiones. Las
condicionesiniciales son consideradas supercriticas
en todo € cand. En e contorno de aguas arriba se
especifican un calado y unavelocidad iguales a sus

03r (a)Fr=17.0

measured

Mac Cormack
= === Two four excluding Boussinesq terms
— Two four excluding Boussinesq terms

Depth (m)
o)
wo

o
)
T

=
o

Mot 7

O 1 1 1 1 1 1 1 L 1
0 2 4 6 8
Distance along Channel (m)

Figura 11. Niveles de agua calculados y medidos para el resalto
hidraulico (Referencia: Gharangif & Chaudhry, 1991).

(a) Fr=7.0

(b) Fr=2.3
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respectivos vaoresiniciales, manteniendo constan-
te su valor alo largo de todo € céaculo. En € con-
torno de aguas abajo se toma un calado constante.
El tamarfio del paso de tiempo fue restringido me-
diante la condicion de estabilidad de Courant. La
Figura 11 muestraunacomparacion entrelos resul -
tados medidos y calculados. En ella se aprecia que
los model os numéricos de cuarto grado de preci-
sion, con o sin los términos de Boussinesg, propor-
cionan aproximadamente e mismo resultado para
todos |os nimeros de Froude ensayados.

Thompson (1990) resolvié |as ecuaciones del
flujo en aguas someras para andizar € flujo bidi-
mensional estacionario en un resalto hidraulico
usando e FEM. La Figura 12 muestralos resulta
dosy lamallade 9 nodos. El acuerdo entre los re-
sultados medidos y calculados es satisfactorio, pe-
ro el frente del resalto calculado no resulto tan acu-
sado como & medido. Laviscosidad artificial debe
ser incluida en la solucion para que converja. Vis-
cosidades artificiales menores dan lugar a resatos
més acusados y por tanto generan mejores resulta
dos.

Tty 20000,
IIIII””
% (] [l”” 7 ll
6 eaet I‘ ”II”‘ 7]
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If I]
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Figura 12. Resalto hidraulico en canal rectangular (referencia:
Thompson, 1990).

Simulacion del resalto hidraulico circular

Younus & Chaudhry (1994) simularon numé-
ricamente un resalto hidréulico circular mediante
un model o k—¢ para poder incluir las tensiones tur-
bulentas. La Unica diferencia de este tipo de solu-
cion esque € flujo radial requiere contornos espa
ciales periddicos en uno delosejesde célculo. You-
nus (1993) presentd los detalles de este proceso. El
régimen de flujo simulado comenzaba a 0.0817m
del centro del chorro, donde el calado era de
0.0082m. Losvaloresinicidlesde U y V fueron ob-
tenidos a partir de la ecuacion de continuidad para
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Figura 13. Perfil de calados calculados y medidos para resalto hi-
dréulico circular (Referencia: Younus & Chaudhry, 1994).

un caudal de 0.017m%/s. En el extremo de aguas
arriba se especificaron todos los vaores de las va-
rigbles (h, U, V, K y €), mientras que en e de aguas
abajo se especificaron U y V, los cuales mantenian
constante sus valores respectivos durante todo €l
célculo, s bien h, k € ( fueron extrapolados a par-
tir de los puntos interiores. El paso computacional
de tiempo At quedaba restringido por € nimero de
Courant. La malla computacional era49x 30y €
model o fue g ecutado hasta que se alcanzo un régi-
men estacionario. Los resultados del cdlculo fueron
comparados con medidas experimentales (Ahmad,
1967) y semuestran en laFigura 13. Lavistatridi-
mensional delasuperficiedd aguase muestraenla
Figura 14.

1.00

CON PENDIENTES FUERTES

Figura 14. Vista tridimensional del resalto hidraulico circular (Refe-
rencia Younus & Cahudhry, 1994).

Resalto hidraulico oblicuo

Zhao et a (1996) simularon un resalto hidrau-
lico oblicuo por medio del FVM. El resalto hidrau-
lico oblicuo se forma por la interaccion entre un
flujo supercritico y unapared convergente deflecta-
daun éngulo 6. Laondade choque se formacon un
angulo 3, tal como muestrala Figura 15-a. Se uti-
liz6 unamallano rectangular de 60 x 80 pararepre-
sentar € canal convergente, siendo e angulo dela
pared 6=8.95° seglin se muestraen laFigura 15-b.
La condicion inicial era un flujo supercritico uni-
forme con nimero de Froudeigual a2.74. Las con-
diciones de contorno para el régimen supercritico
se especificaron en € extremo de aguas arriba. El
calculo convergiaa régimen estacionario para esas
condicionesinicialesy de contorno. Los resultados

Figura 15. Malla, vista en planta, contorno y representaciones mostrando las distribuciones de calado en el resalto hidraulico oblicuo (Refe-

rencia: Zhao et al., 1996).

(a) Vista en planta del frente de onda oblicuo

= 10 15 20 25 30 35
(c) Contorno del calado

(b) Malla

(d) Superficie del agua
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se recogen en la Tabla 1. El calado del aguay los
perfiles superficiales obtenidos con € FVM estan
representados enlasFiguras 15-cy 15-d. Lasdife-
rencias entre los resultados y la solucién exactare-
sultan inferiores a 2%. La diferenciaen € angulo
dela onda de choque se sitiaen torno a 0.5%.

Tabla 1. Resultados para resalto hidraulico oblicuo
(Referencia: Zhao et al. 1996).

Velocidad Altura del

Angulo de

medido y calculado alo largo delas paredesy enla
linea central del canal, donde € flujo es suave. No
ocurre lo mismo en lalinea central del perfil super-
ficial cercadelasfuertes ondas de choque. El nivel
méximo calculado queda cerca del valor medido,
pero hay unadiferenciasignificativaenlo queapo-
sicion se refiere. Los
resultados pueden ser
usados con seguridad
para disefios préacti-

406

Namero de

del frente frente la onda de F COS, pero no son pre-

roude )
(m/s) (m) choque cisos desde el punto
FVS 7.952 1.497 30.14 2.075 de vista académico.
DS 7.944 1.502 29.98 2.070 El desacuerdo entre
Osher 7.950 1.498 30.12 2.074 los resultados medi-
Exacto dosy calculadosen la
(tomado de Ha- 7.953 1.500 30.00 2.074 linea central puede
ger et al. (1994) ser debido ala consi-

Flujo supercritico en contraccion simétrica

Jiménez & Chaudhry (1988) compararon los
resultados medidos parad flujo en unacontraccién
compuestapor arcos circulares (Figura 16-a), y los
resultados del calculo utilizando € FDM. Los re-
sultados aqui recogidos corresponden a un nimero
de Froudeinicia igual a4.0. Se consider6 un caa
do constante y una velocidad distribuida uniforme-
mente en la seccidn de aguas arriba, utilizandose
una malla de 21 puntos. Se uso una condicion de
contorno simétrica, smulédndose la mitad del cam-
po deflujo. Enlalongitud de contraccién se encon-
tré un buen acuerdo entre el calado de agua cal cu-
lado y medido, pero aguas abgjo de latransicion la
diferencia entre resultados calculados y medidos se
hizo mas acusada. La prediccion para los niveles
méximos de agua no resulté satisfactoria, debido a
gue se usaron valores grandes de la relacion caa
do/anchuray alapresencia de perturbaciones.

Bhallamudi & Chaudhry (1992) compararon
los resultados medidos y calculados para una con-
traccion simétricacon pared recta. Losdatosdel la-
boratorio fueron aportados por Ippen et a (1951).
El nimero de Froude aguas arriba eraigua a 4.0.
Los célculos fueron hechos utilizando coordenadas
transformadas. El coeficiente de disipacion era
igual a0.80, & nimero de Courant igual a0.8y
factor defriccion alo largo de las paredes y fondo
del canal se supuso nulo. Las condicionesiniciales,
calado y velocidad del flujo, se especifican en €
extremo de aguas arriba, no indicandose condicion
alguna para e extremo de aguas abajo. Se obtiene
un buen acuerdo entre & perfil superficial del agua
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deracion de distribu-
cion hidrostética de presiones, la cua no es valida
cerca de frentes de onda bruscos.

Figura 16. Simulacién del flujo en una contraccién por arcos circu-
lares (Referencia: Jiménez & Chaudhry, 1988).
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(c) Representacién tridimensional de la superficie de agua calculada
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Figura 17. Flujo supercritico en una contraccién (Referencia: Bha-
llamudi & Chaudhry, 1992).
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