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Resumen:

Se realiza una investigacion sobre el comportamiento multifractal en la parte final de algunos cursos
fluviales de Calabria (sur de Italia).

Esta investigacion se ha llevado a cabo mediante la utilizacion del Método de la Integrai de Correlacion
Generalizada. Los datos derivan de los sistemas de los cauces trenzados extraidos de cartografia a
escala 1:10000. Particularmente, se han estimado los espectros de las dimensiones fractales genera-
lizadas, D, la secuencia de los exponentes de masa, T, los espectros de las singularidades, c., y los
espectros multifractales, f{ct ).

Los analisis multifractales hechos sobre las configuraciones estaticas de sistemas de cauces trenzados
que han sido objeto de este estudio tienen comportamientos de auto-similitud. Los resultados mues-
tran que los sistemas de cauces trenzados objeto de estudio tienen un comportamiento auto-similar
y multifractal.
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INTERPRETAZIONE FRATTALE E MULTIFRATTALE
DEI CORSI D’ACQUA NATURALI

La geometria frattale svolge un ruolo di fon-
damentale importanza per la comprensione di
molti fenomeni complessi presenti in natura, carat-
terizzando dettagliatamente gli aspetti essenziali
strettamente collegati alla scala di osservazione. in
cui la dimensione frattale rappresenta I'invariante
di scaling (Malcai et al. 1997: Avnir et al. 1998).

Nell'ultimo decennio I'interpretazione fratta-
le ha riguardato la caratterizzazione dei corsi d’ac-
qua naturali, sia in ambito idraulico-idrologico che
geomorfologico fluviale, passando da un campo
di indagine a scala di bacino, ossia di sviluppo
planimetrico-areale delle reti fluviali, a quello lo-
cale esteso a un ristretto intervallo di osservazione
spaziale.

A scala di bacino, la rete idrografica viene
intesa come una intricata struttura auto-organiz-
zata (Rodriguez-Iturbe e Rinaldo, 1997). la cui
proiezione sul piano bi-dimensionale del rilievo.

manifesta un comportamento multifrattale rap-
presentato da uno spettro di dimensioni frattali a
cui corrispondono sotto-strutture di reti o porzioni
di esse, liberamenlte interconnesse, ciascuna delle
quali caratterizzata da un proprio esponente di sca-
la. noto in letteratura come crowding index ovvero
esponente di Lipschitz-Hdlder (De Bartolo et al.
1995: 1998: 2000; 2003: 2004; 2005).

A scala locale, I'osservazione della rete viene
fortemente influenzata dall’andamento planime-
trico del corso d’acqua nel suo sviluppo unicursale
ovvero pluricursale. C'¢ da precisare, pero, che il
solo carattere unicursale costituisce un parametro
di riferimento dipendente dalla scala di dettaglio
(che puo raggiungere 'ordine di qualche decina
di metri).

Con riferimento alle consuete scale di bacino
(ad esempio comprese tra 1:25000 e 1:50000), tra-
mite 'interpretazione mono-frattale delle singole
aste (Mandelbrot, 1977; Hjelmfelt, 1988; Robert ¢
Roy. 1990) nella gerarchizzazione di Horton-Strah-
ler (Horton, 1932; 1945 e Strahler, 1952; 1964),
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la dimensione frattale. qui intesa come dimensione
di stream (LLa Barbera e Rosso 1987; 1989), costi-
tuirebbe un invariante che tiene conto di un range
di scala condizionato dal limite inferiore di risca-
lamento (lower-cutoff) rispetto al quale essa stessa
viene calcolata.

Pertanto tale interpretazione potrebbe risul-
tare potenzialmente errata se la si considerassc
come dimensione frattale invariante del singolo
corso d’acqua anche a scale a maggiore dettaglio.
potendo essere queste ultime rappresentative an-
che di una natura pluricursale. In questo caso il
riferimento alla granularita (coarse graining) for-
nita dalla scala di riferimento risulta di fondamen-
tale importanza (Tarboton et al., 1988: Evertsz e
Mandelbrot, 1992: Rigon. 1994).

Nell'ambito della presente nota si & procedu-
to alla caratterizzazione geometrica, in condizioni
non-dinamiche, dei tratti terminali di alcuni corsi
d’acqua calabresi a una scala 1:10000 rappresen-
tativa della loro natura pluricursale.

Le pit recenti ricerche sui corsi d’acqua in-
trecciati sono state rivolte alla comprensione dei
fenomeni a scala di canale (portate e trasporto
solido nelle biforcazioni e nelle confluenze, assor-
timento granulometrico). ai meccanismi di forma-
zione dell’intera rete di canali intrecciati, alle loro
caratteristiche frattali ed alle proprieta di scaling.

Sapozhnikov e Foufoula-Georgiou (1996)
ritengono che i corsi d’acqua intrecciati mostrano
uno scaling anisotropo, quindi un comportamento
auto-affine, ed evidenziano peraltro come un tale
comportamento, valido per corsi d acqua con
grandi differenze di scala (larghezza del corso
d’acqua variabile da 0.5 km a 15 km), pendenze
(da 7-102 a 8-107), tipo di materiale (da sabbia a
ghiaia). possa essere il risultato di meccanismi si-
mili nella formazione di queste strutture spaziali.

Nykanen et al. (1998) hanno inoltre eviden-
ziato che 1 corsi d’acqua intrecciati con vincoli
esterni di tipo geologico-topografico (rilievi, per-
corsi dominanti) non presentano la suddetta inva-
rianza di scala. Sempre Sapozhnikov e Foufoula-
Georgiou (1996) hanno avvalorato. inoltre. che il
comportamento di alcuni corsi d’acqua braided
possa essere anisotropo in base alle dimensioni
delle isole e lungo, ciog. le proiezioni delle stesse
su due assi di cui uno orientato lungo la linea col-
legante I'inizio e la fine di ogni tratto analizzato
e I’altro ad esso ortogonale. E da dire perd che
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sul comportamento anisotropo (auto-affine) o
isotropo (auto-somigliante) dei sistemi di canali
intrecciati non c¢’¢ accordo generale.

In particolare Walsh e Hicks (2002) riten-
gono che I'analisi delle isole considerando ['asse
maggiore delle stesse (lunghezza) e quello ad esso
ortogonale (larghezza) insieme ad una regressione
di scala basata sulla media geometrica porta. non
solo per i corsi d'acqua della Nuova Zelanda da
loro analizzati ma anche per quelli analizzati da
Foufoula-Georgiou ¢ Sapozhnikov (1996), verso
un comportamento auto-somigliante.

Anche Nikora et al. (1995) per alcuni sistemi
di canali intrecciati della Nuova Zelanda aveva-
no ottenuto un comportamento auto-somigliante
valutando la dimensione frattale mediante la pro-
cedura standardizzata di box-counting e ottenendo
come dimensione del supporto valori compresi
nell’intervallo 1.5+1.7.

Tali risultati furono discussi dagli stessi Sa-
pozhnikov e Foufoula-Georgiou (1996) perché la
procedura di standardizzazione effettuata con il
metodo delle masse. M(R). risulta non idonea per
il riconoscimento della natura auto-somigliante
ovvero della natura auto-affine, in quanto a scale
differenti. sia piccole che grandi, tale metodo evi-
denzia due distinti andamenti 1 quali rappresentano
rispettivamente le dimensioni locali D, e globali
D,,. Tali dimensioni, ancora secondo Sapozhnikov
e Foufoula-Georgiou (1996), costituirebbero, al
contrario di quando sopra affermato, la base della
natura auto-affine dei canali intrecciati, in quanto
direttamente dipendenti dagli esponenti longitudi-
nali e trasversali che caratterizzano la legge delle
scale di misura,

Risulta di fondamentale importanza capire,
soprattutto alla luce anche delle recenti validazioni
sperimentali effettuate da Sapozhnikov e Foufou-
la-Georgiou (1997) sul carattere auto-organizzato
delle reti braided e da Rosatti (2002) in conside-
razione delle analisi di isotropia ¢ anisotropia sui
canali intrecciati, quale comportamento riscalante
caratterizzi le misure relative alla distribuzione dei
canali intrecciati nel piano di rilevamento.

L approccio seguito nella presente nota & stato
quello degli spettri delle dimensioni frattali gene-
ralizzate (De Bartolo et al., 2000 e De Bartolo et
al., 2003) essendo quest’ultimi in accordo ai primi
lavori effettuati da Nikora et al. (1995) attraverso
I"utilizzo delle tecniche standardizzate mono-frattali.



IRPRETAZIONI’. MULTIFRATTALE DEI TRATTI

VALLIVI DEI CORSI D’ACQUA CALABRESI

Questa generalizzazione si pone in un campo in-
termedio tra I'analisi mono-frattale ¢ multifrattale
(auto-affine) delle misure relative ai sistemi di
canali intrecciati ¢ rappresenta una prima caratte-
rizzazione multifrattale in termini di misure auto-
somiglianti.

La scelta di tale approccio ¢ dovuta anche
al fatto che gli sviluppi multifrattali dei braided
vortex river proposti da Bassler et al. (1999) sulla
base della generalizzazione della metodologia
proposta da Sapozhnikov e Foufoula-Georgiou
(1996) hanno gia evidenziato. nel caso dei brai-
ded vortex river, caratteristiche di multifrattalita
con dimensioni del supporto delle misure pari a 2
e facendo ritenere per questi ultimi un probabile
comportamento di tipo plane-filling. Motivazio-
ne avvalorata anche dal fatto che Bassler et al.
(1999) ritengono esista un’unica classe universale
di canali intrecciati a cui appartengono sia i canali
intrecciati a vortice che i sistemi di canali intrec-
ciati fluviali.

MISURE MULTIFRATTALI

11 formalismo multifrattale trova origine nella
teoria delle misure. Esso venne introdotto a partire
dalla meta degli anni cinquanta del secolo scorso,
grazie ai contributi di Renyi (1955) sulle entropie
generalizzate e caratterizzato successivamente, tra
gli anni settanta e ottanta, dagli sviluppi di Man-
delbrot (1973: 1974), Badii e Politi (1984: 1985) e
Halsey et al. (1986).

Com’e noto, per misura si intende una leg-
ge di potenza che lega il contenuto (0 massa o
probabilita), p;. dell'insieme di punti ricadenti in
una generica cella, i, al suo lato di lunghezza &.
attraverso un esponente di singolarita. Le misure
multifrattali. quindi, interessano la distribuzione
di tali grandezze su un supporto geometrico. carat-
terizzato, quest ultimo. dall’essere esso stesso un
frattale (Feder. 1988).

In considerazione di quanto testé definito,
per insieme multifrattale si intende |'unione di pit
sotto-insiemi mono-frattali, tra loro liberamente
interconessi, aventi ciascuno una propria dimen-
sione frattale (Aharony, 1989: Feder. 1988 Falco-
ner. 1990). In generale tale unione viene descritta
interamente da un numero infinito di dimensioni
frattali generalizzate, D, dette anche di Renyi
(Renyi, 1955; 1970). oppure in modo pil artico-
lato attraverso lo spettro multifrattale, flee,) (Hal-

sey et al., 1986). L'andamento delle dimensioni
frattali generalizzate, D, in funzione dell’ordine
del momento della probabilita. ¢, viene descritto
attraverso le espressioni:

Iny p?
D, = ! lim Erp' g=1
g-10 Ing
Inp A
D, =lim Lok i
=0 Ine

dove p, & la misura normalizzata nell’i-esima cclla
di lato & della partizione di ricoprimento dell’og-
getto in esame, mentre 1, dimensione di informa-
zione, viene ottenuta, a partire dalla prima espres-
sione riportata nella (1), come processo limite
relativo alla singolarita g=1.

La relazione che lega lo spettro delle dimen-
sioni frattali generalizzate. D,. allo spettro mul-
tifrattale, flee,). si individua attraverso 1'utilizzo
della sequenza degli esponenti di massa. 7, (Hen-
tschel e Procaccia, 1983). cioé una funzione in
grado di controllare come i momenti della proba-
bilita scalano con il lato delle celle, €, che & fornita
dall’espressione:

t, =(1-q)D,. @

In definitiva, attraverso la (2) risulta possibile
risalire allo spettro multifrattale. fle,). in conside-
razione delle trasformate di Legendre (Halsey ct
al.. 1986):

T
q dq g (3)

le quali associano parametricamente, attraverso |
momenti g. le singolarita « alle dimensioni frattali

/- L'analisi degli spettri multifrattali, D, e fla,),

viene effettuata generalmente mediante procedure
numeriche basate su algoritmi di ricoprimento a
taglia fissa. noti in letteratura come procedure di
box-counting. in cui si fissa il lato della cella di
ricoprimento nel riscalamento della funzione di
partizione della misura ( 21‘ pf 0

Negli ultimi anni sono stati proposti numero-
si algoritmi veloci di ricoprimento mirati all anali-
si completa dello spettro multifrattale, f{a), carat-
terizzata. cioe. dalla stima sia dei momenti positivi
che di quelli negativi. Tali tecniche numeriche
(Pastor-Satorras ¢ Riedi: 1996, Yamaguti ¢ Prado,
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1997; Oiwa e Fiedler-Ferrara. 1998, Feeny, 2000).
pur offrendo in sé una riduzione considerevole
dei tempi computazionali rispetto alle procedure
standardizzate (Liebovitch and Toth. 1989: Block
et al., 1990: Hou et al.. 1990, Meisel ct al.. 1992;
Molteno, 1993). mostrano tuttora lo svantaggio
di essere imprecise per misure enfatizzate da pesi
negativi. Infatti in letteratura (Hakansson e Rus-
seberg. 1990: Meisel e Johnson, 1994 Veneziano
et al.. 1995: Mach et al.. 1995; Pastor-Satorras e
Riedi, 1996; Yamaguti e Prado. 1997: Meisel e
Johnson, 1997) & ormai stabilito univocamente
che le cause di tali imprecisioni sono da ricercarsi
oltre che nella bassa statistica dei punti costituenti
il frattale oggetto di misura, anche nell’utilizzo
diretto delle trasformate di Legendre (Chhabra e
Jensen, 1989: Veneziano et al., 1995).

In accordo a Meisel e Johnson (1994) una
delle procedure a taglia fissa pilt accurata per la
stima delle dimensioni frattali generalizzate ¢
quella suggerita da Pawelzik e Schuster (1987).
La base di tale procedura ¢ costituita dalla genera-
lizzazione dell integrale di correlazione introdotio
da Grassberger e Procaccia (1983) e Grassberger
(1983) per la valutazione della dimensione di
correlazione D,. | dettagli del metodo vengono
presentati nell” Appendice 1.

ANALISI MULTIFRATTALE DEI TRATTI
VALLIVI DI ALCUNI CORSI D'ACQUA
CALABRESI

L'analisi effettuata ha riguardato lo studio
del comportamento multifrattale dei tratti vallivi
intrecciati di tre corsi d’acqua della Calabria: il
Ferro. lo Stilaro ed il Torbido. In Tabella 1 sono
riportati i loro parametri geomorfologici ossia: la
superficie del bacino drenante S (km?). 'altezza
massima H,, (m s.l.m.) e quella media H,, (m
s.l.m.), Ia lunghezza L (km) e la pendenza media i
(%) calcolata come H,,, /L. I primo corso d’acqua
appartienc alla zona lonica settentrionale. gli altri
due a quella meridionale.

Tabella 1. Caratteristiche geomorfologiche dei tratti ana-
lizzati.

Corso
d’acqua

S (km?) : H.., L(km)

Ferro
Stilaro
Torbido

Tratta da: Viparelli M. (1972).
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Tutti ¢ tre 1 corsi d’acqua sono soggetti a
[requenti fenomeni di piena con le massime con-
centrazioni di eventi alluvionali in novembre e
marzo e precipitazioni notevoli nel periodo dicem-
bre-gennaio e in ottobre (Petrucct et al., 1996).
Fra le maggiori precipitazioni si ricordano per
la stazione idrometrica di Stilo. appartenente al
bacino dello Stilaro, 1 valori di 115 mm, 264 mm
¢ 359 mm rispettivamente per lc piogge di durata
lh, 12 h e 24 h verificatesi la prima nell ottobre
del 1951 e le altre due nell’ottobre del 1933. Con
riferimento alla stazione di Gioiosa Jonica, appar-
tenente invece al bacino del Torbido, si citano i
valori 52 mm, 237 mm e 306 mm sempre per le
piogge di durata 1h, 12 h e 24 h, verificatesi tutte
nell ottobre del 1951.

Per il Torbido ¢ stata stimata alla foce una
portata al colmo di 8.58 m%/s km? corrispondente
ad un valore di 1390 m¥s per I"evento alluvionale
del 10-11-1932. Nei pil recenti eventi straordinari
(Petrucci et al.. 1996) del 1972-73 il Torbido &
entrato in piena ben quattro volte nel giro di un
mese (con 'abbattimento in uno dei casi di un
ponte), mentre nello Stilaro la piena del 1976 ha
determinato gravi danni con il crollo di opere di
attraversamento.

Nel tratto montano 1 tre corsi d’acqua scor-
rono incassati in ripidi pendici e dal momento
che attraversano terreni fortemente degradati,
soggetti a frequenti frane, essi si caricano di una
quantita considerevole di materiale solido. La
parte grossolana di tale materiale viene depositata
dalla corrente nella zona valliva favorendo la for-
mazione di barre. Peraltro la presenza. in queste
aree, di sponde erodibili permette ["allargamento
del canale ¢ costituisce un'importante sorgente
di materiale solido. Se le portate maggiori deter-
minano profonde modifiche nella morfologia dei
corsi d’acqua analizzati ¢’¢ da rilevare come an-
che le portate di piena pitt modeste sono in grado
di formare o distruggere i canali e le barre in inter-
valli temporali che vanno da poche ore a qualche
giorno. L'insieme di questi [attori determinano un
andamento planimetrico dei corsi d’acqua analiz-
zati, per una parte dell’anno, di tipo intrecciato
con rapidi cambiamenti plano altimetrici e, nel
caso delle portate maggiori, cospicue traslazioni
del canale principale.

11 tratto analizzato del Ferro ha inizio ad una
quota di circa 160 m s.l.m. e termine a 15 m s.I.m.
per una lunghezza complessiva di circa 10000
m e una pendenza media, /., pari a 1.41 (%)
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la larghezza dell’alveo & abbastanza uniforme
con un valore medio di circa 370 m e si amplia
solo nella parte terminale raggiungendo un valore
massimo di circa 700 m. Il tratto analizzato dello
Stilaro ha inizio ad una quota di circa 125 m s.L.m.
e termine a circa 10 m s.l.m. per una lunghezza
complessiva di circa 7250 m e una pendenza me-
dia, i, pari a 1.49 (%): la larghezza dell’alveo
¢ nella parte iniziale piuttosto ridotta, si amplia
poi notevolmente raggiungendo un valore massi-
mo di circa 840 m mentre nella parte terminale,
corrispondente al 40% della lunghezza del tratto
esaminato, si puo ritenere abbastanza costante con
un valore medio di circa 350 m. Il tratto analizzato
del Torbido ha inizio ad una quota di circa 190 m
s.l.m. e termine a 40 m s.l.m. per una lunghezza
complessiva di circa 8400 m e una pendenza me-
dia, i,,, pari a 1.67 (%): la larghezza dell’alveo ¢
abbastanza uniforme con un valore medio di circa
280 m e una larghezza massima di circa 340 m.

gy

Figura 1. Rappresentazione dei tratti terminali dei corsi
d'acqua analizzati.

I tre sistemi di canali intrecciati sono stati
estratti da digitalizzazioni cartografiche in scala
1:10000 e sono rappresentati da insiemi costituiti
da punti reticolo 1 quali ne caratterizzano. come ag-
gregali frattali. 1a loro struttura discretizzata (Figura
). La rete dei canali @ stata digitalizzata in modo
dettagliato e successivamente & stata rappresentata
con passi spaziali di circa 2 metri, 4 metri e 8 metri.
Ciascun sistema di punti & stato confinato (normaliz-
zalo) nella cella unitaria senza alterarne le proprieta
topologiche (Falconer, 1990: Block et al., 1990).

L'analisi & stata effettuata mediante procedure
standardizzate a taglia fissa in accordo al metoado
proposto da De Bartolo et al. (2003; 2005) relativo
alla generalizzazione dell’integrale di correlazione
(vedi Appendice 1). Tale procedura numerica ha
permesso pertanto di delimitare I'intervallo di risca-
lamento dell’integrale di correlazione generalizzato,
espresso dalle relazioni (A.3) e (A.5). partendo dai
valori relativi alla minima e massima distanza di
campionamento tra i net points costituenti i sistemi
discreti dei tre canali intrecciati. In Tabella 2 sono 1i-
portati rispettivamente: il numero di net-points, N,
i valori della minima e massima distanza (€,,;,. €,..)»
in accordo alle definizioni di cui all’ Appendice 1,
tra i punti campionati e della base. b. della distanza
tra i punti alle risoluzioni di 2. 4 e 8 metri con parti-
zione massima del supporto, M, .. pari a 41.

Tabella Z. Caratteristiche degli insiemi relativi ai tre sistemi

di canali intrecciati normalizzati.

Corso d’acqua s Emin

Ferro (Z m) 0.00021 1.

Ferro (4 m) 15892 | 0.00078 | 1.055 | 1.192 | 41

Ferro (8 m) 7838 | 0.00100 | 1.055 | 1.185 | 41
il e RPA ) 13953 | 0.00037 | 1.193 | 1.217 | 41
Stilaro (4 m) 6960 | 0.00083 | 1.193 | 1.194 | 41
Stilaro (8 m) 3465 | 0:.00150 | 1.193 | 1.177 | 41
Bl sclPadl 16103 | 0.00034 | 1.330 | 1.223 | 41
Bl R )8 7309 | 0.00125 | 1.330 | 1.185 | 41
Blelisila ot} 3954 | 0.00141 | 1.330 | 1.181 41

Lo spetiro delle dimensioni frattali gene-
ralizzate D, & stato stimato attraverso 1'utilizzo
delle relazioni (A.1), (A2).(A3) e (A.5) ovvero
dal riscalamento del InC, in funzione del Ing¢ in
accordo alle relazioni (A.10) e (A.11) (De Bartolo
et al., 2003, 2005) e ciascuna dimensione frattale
¢ stata calcolata dalla pendenza di ognuna delle
curve di riscalamento all’interno del campo di va-
lori costituito dai limiti inferiori e superiori di cut-
OffS [€),0 €] 10 CUL € massimo il cocfficiente

di determinazione R’ (De Bartolo et al., 2000).
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In Figura 2 ¢ riportato ['andamento di InC, in
funzione di Ine per la rete dei canali intrecciati del
Ferro alla risoluzione spaziale di 2 metri. Le curve
di riscalamento riportate sono relative agli ordini
dei momenti -5.-10,1,5.

Figura Z. Scaling dell'integrale di correlazione generaliz-
zato, C (¢ (tratto vallivo del Ferro alla risoluzione spaziale
di 2 m).

In particolare ¢ stato possibile stimare il InC,
vs. Ine per valori di ¢ appartenenti agli intervalli:
[-5.7] nel caso del Ferro peripassi 2.4 ¢ 8 m: [-5,
7] nel caso dello Stilaro per il passo 2 metri e [0,
7] per i passi 4 e 8§ metri; [-2. 7] per il Torbido ai
passi 2,4 ¢ 8 metri. In Figura 3 sono riportate, per
il tratto vallivo del Ferro. alle risoluzioni 2.4 ¢ 8
metri le leggi di variazione di Ine in funzione del
partizionamento M, variabile da I sinoa M, ..

g wnt sy
Al
o

i
(=3

.
m »

M

Figura 3. Variazione del /n¢. in funzione del numero di par-
tizionamenti M (tratto vallivo del Ferro, risoluzioni spaziali
di 2, 4 e 8 metri).

Nella Figura 4 sono rappresentati, per il si-
stema di canali intrecciati del tratto vallivo del
Torbido. gli andamenti degli spettri delle dimen-
sioni frattali generalizzate. D, . rispettivamen-
te alle risoluzioni 2. 4 e 8 metri e per momenti,
g, stimati nell'intervallo di valori interi [-2. 7],
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mentre nella Figura 5 € mostrato. per il tratto
vallivo dello Stilaro. il confronto delle tre se-
quenze di massa T,. ricavate attraverso la (A.6)
alla risoluzione 2 metri. con momenti. ¢. stimati
nell'intervallo di valori [-5, 7] ¢ alle risoluzioni 4
¢ 8 metri per momenti, ¢. stimati nell’intervallo di
valori [0. 7].

D,

Figura 4. Spettri delle dimensioni frattali generalizzate, D,,
stimati alle risoluzioni spaziali di 2. 4 e 8 metri e per valori
dei momenti q compresi nell'intervallo di valori interi po-
sitivi [-2, 7] e [0, 7] (tratto vallivo del Torbido).

q

Figura 5. Sequenze degli esponenti di massa,_t,, stimate
alle risoluzioni spaziali di 2. 4 e 8 metri e per valori dei
momenti q compresi nell'intervallo di valori interi positivi
[-5, 7] e [0, 7] (tratto vallivo dello Stilaro).

In accordo alle relazioni (A.7), (A.8) e (A.9)
sono stati ricavati inoltre gli spettri delle singolari-
ta, a,, e gli spettri multifrattali fic.,). Nelle Figura
6 e 7 sono riportati rispettivamente. per il tratto
vallivo del Ferro. I'andamento degli spettri delle
singolarita e gli spettri multifrattali alle risoluzioni
2.4 e 8 metri e per momenti, ¢, stimati nell'inter-
vallo di valori interi [-7, 7].
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Figura 6. Spettri delle singolarita, «,, stimati alle risoluzioni
spaziali di 2, 4 e 8 metri e per valori dei momenti q com-
presi nell'intervallo di valori interi positivi [-7, 7] (tratto
vallivo del Ferro).

La Tabella 3 riporta, per ciascun sistema di
canali intrecciati analizzati al passo spaziale di 2
metri, i valori del coefficiente di determinazione,
R?,_,. per la stima di D,_: i limiti dell’intervallo
di determinazione delle dimensioni frattali g,,,,, €
€,,per PET q=0): la dimensione frattale del supporto,
D= floy); la dimensione di entropia, D, la
dimensione di correlazione. D, i valori delle
singolaritd o, O € Oy )

min ?

ANALISI DEI RISULTATI

I risultati ottenuti evidenziano il comporta-
mento multifrattale dei tre sistemi di canali intrec-
ciati analizzati e caratterizzati da un ben determi-
nato intervallo di valori sia per quanto concerne gli
indici delle singolarita, c,. sia per quanto riguarda
le dimensioni frattali generalizzate D,

In tutti i casi analizzati i coefficienti di deter-
minazione, R, relativi alle stime delle dimensioni
frattali generalizzate, D, delle sequenze degli
esponenti di massa, t,. dei valori di singolarita,
a,. e delle dimensioni frattali. flar,), hanno assunto
valori molto prossimi all unita.

Nel caso del Torbido alla risoluzione di 8
metri & stato possibile stimare i soli momenti po-
sitivi appartenenti all’intervallo di valori interi
[0, 7]. Per quanto concerne il tratto terminale del-
lo Stilaro tale stima & stata possibile per ordini
compresi nell’intervallo di valori interi [-5, 7]
alla risoluzione spaziale di 2 metri mentre per le
restanti risoluzioni la stima dei momenti ¢ ricaduta
nell’intervallo di valori interi positivi [0, 7]. Que-
st’ultima riduzione di momenti negativi stimati,
cosi come in parte anche nel caso del Torbido
risulta strettamente connessa alla bassa statistica
dei netpoints per le risoluzioni 4 ¢ 8 metri (vedi
Tabella 2) in quanto tali valori non forniscono una
base sufficientemente numerosa per una corretta
stima. a pesi negativi. del supporto della misura
(De Bartolo et al., 2003).

Gli spettri multifrattali stimati sono risultati
indipendenti dal passo spaziale di rappresentazio-
ne dei netpoints costituenti I’aggregato frattale dei
sistemi di canali intrecciati. mentre le dimensioni
frattali stimate del supporto della misura, D__.
hanno valori differenti anche se il limite supe-
riore di cut-off ¢ risultato dello stesso ordine di
grandezza della larghezza media di ogni tratto
(vedi Tabella IIT). Quest™ultima considerazione ¢
in accordo con quanto riportato da Rosatti (2002)
relativamente alle misure isotrope effettuate su
canali intrecciati riprodotti in laboratorio.

Tabella 4. Campi di variabilita degli indici delle singolarita
alle diverse risoluzioni spaziali.

Risoluzione

{ « =D =7
e flay)=D,

2Zm 1.462+1.721

1.245+1.577

1.634+2.099

4'm 1.468+1.724 | 1.245+1.591

1.495+2.171

1.191+1.588

8m 1.469+1.732

1.510+2.179

In Tabella IV sono riportati i campi di varia-
bilita degli indici delle singolarita alle diverse riso-
luzioni spaziali. La media delle dimensioni frattali
del supporto delle misure calcolate alle risoluzioni
2,4 e 8 metri & risultata essere pari a 1.726 nel
caso del Ferro: pari a 1.466 nel caso dello Stilaro;

Tabella 3. Risultati relativi agli indici di singolarita delle misure: passo di risoluzione spaziale Z m.

D
erro 0.9999 71 167 1.721 | 1.716 | 1.710 | 1.577 | 1.725 | 2.099
0 0.9991 111 537 1.462 | 1.438 | 1.412 | 1.245 | 1.482 | 1.696
0 O 0.9994 42 212 1.542 | 1.518 | 1.487 | 1.313 | 1.560 | 1.634
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pari a 1.546 nel caso del Torbido. I risultati, pur
differenti tra loro, risultano essere abbastanza con-
gruenti con quelli stimati da Nikora et al. (1995)
su 14 tratti di corsi d’acqua intrecciati della Nuova
Zelanda.

In accordo a Sapozhnikov e Foufoula-Geor-
giou (1996) i tre sistemi di canali intrecciati ana-
lizzati riempiono il piano piti densamente dei
corsi d’acqua a canale singolo ma meno delle
reti fluviali a scala di bacino. Questa differenza
¢ in contrasto con il presunto comportamento
plane-filling ipotizzato dal modello multifrattale
di Bassler et al. (1999). Pare di poter rilevare
che all’aumentare della dimensione frattale del
supporto le strutture che costituiscono i sistemi di
canali intrecciati passano da una organizzazione
strutturale meno densa (Stilaro), verso una pit
densa (Ferro).

175

1.25
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Figura 7. Spettri multifrattali, ﬁaq), stimati alle risoluzioni
spaziali di 2, 4 e 8 metri e per valori dei momenti q com-
presi nell'intervallo di valori interi positivi [-7, 7] (tratto
vallivo del Ferro).

In generale gli spettri delle dimensioni frat-
tali ottenuti sono rappresentativi oltre che del-
la natura multifrattale anche della complessita
geometrica dei sistemi di percorsi dei canali in-
trecciati. Come & facile riscontrare dalla Figura
7 lo spettro multifrattale (nel caso del Ferro) &
anche ben rappresentato nella parte sinistra a pesi
g>0 che caratterizza, come & ormai noto. le mi-
sure multifrattali auto-somiglianti (Mandelbrot
e Evertsz, 1991). T risultati del presente lavoro,
anche sulla base di quelli Nikora et al. (1995) e
da Walsh e Hicks (2002). inducono a ritenere che
almeno per i corsi d’acqua analizzati 1’andamento
planimetrico dei sistemi di canali intrecciati sia
auto-somigliante.
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CONCLUSIONI

E stato analizzato il comportamento multi-
frattalc di tre sistemi di canali intrecciati apparte-
nenti ai tratti terminali dei corsi d’acqua calabresi
del Ferro, Stilaro ¢ Torbido. Ciascun sistema di ca-
nali intrecciato e stato estratto da digitalizzazioni
in scala 1:10000 e rappresentato, come aggregato
frattale. attraverso un insieme discreto di punti
reticolo. La procedura di campionatura dei punti
reticolo ¢ stata effettuata con passi spaziali di 2,
4 e 8 metri.

L'analisi ha riguardato la stima degli spettri
delle dimensioni frattali generalizzate, D, gli
spettri delle singolaritad. , e gli spettri multifrat-
tali, fla,) mediante una procedura standardizzata a
base auto-somigliante.

In particolare la procedura di stima numerica
degli spettri multifrattali si & avvalsa della genera-
lizzazione dell’integrale di correlazione introdotta
da Pawelzik ¢ Schuster (1987) con partizione
csponenziale della base relativa alla minima e
massima distanza tra i punti reticolo (De Bartolo
et al., 2003, 2005) costituenti ciascun sistema di
canali intrecciald.

Lanalisi ha evidenziato che i punti reticolo
rappresentativi dei sistemi di canali intrecciati
appartenenti ai tre tratti vallivi analizzati. costi-
tuiscono una distribuzione multifrattale auto-so-
migliante, con valori medi stimati della dimen-
sione frattale del supporto compresi tra 1.46 e
1.72 ¢ indipendenti dalla risoluzione spaziale
adottata.

Le dimensioni frattali del supporto, pur es-
sendo tra loro differenti. si mostrano in accordo
alle precedenti esperienze mono-frattali condotte
da Nikora et al. (1995) ¢ Walsh e Hicks (2002) su
sistemi di canali intrecciati della Nuova Zelanda
attraverso tecniche di ricoprimento standardizzato
(box-counting).

L’analisi eseguita nella presente nota ha evi-
denziato concretamente la possibilita di prose-
guire nelle indagini che coinvolgano un maggior
numero di sistemi di canali intrecciati al fine di
verificare la dipendenza della dimensione frattale
del supporto da grandezze idraulico-geomorfo-
logiche fondamentali quali portate, pendenze ¢
trasporto solido.
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APPENDICE 1. IL METODO DELL'INTEGRALE
DI CORRELAZIONE GENERALIZZATO

In accordo a quanto riportato da De Bartolo
et al. (2003: 2005), la famiglia di dimensioni frat-
tali generalizzate secondo Ja proaedula numerica
di Pawelzik ¢ Schuster (1987) viene espressa dalle
relazioni:

~ InC (e)
D =lim——— g=1 (A1)
T e=0 Ineg
€
InC,(g)
D, = lim InCy(e) (A.2)
>0 Ineg

Nella (A.1) il termine C (Ehapp:eqenml integrale
di correlazione generahzzato a tutti i momenti g
espresso dalla relazione:

C (s)—hm{ ( 2@@—1\ - X,

g-1 11(g-1)

per g=1. (A.3)
in cui ® & la funzione a gradino di Heaviside, la
quale assume i valori:

Q()=0 se (<0,
O()=1 se ()=0,

mentre (x,.x;) e N rappresentano, rispettivamente.
la generica coppia di punti e il numero di net-poin-
ts (aggregato frattale). Risulta utile evidenziare
che la (A.3) enumera semplicemente le coppic di
punti (x,.x,) con distanza | x.-x;| minore €.

Nella (A.2) il termine InC,(¢) rappresenta invece
I'integrale di correlazione espresso dalla (A.3)
nella singolarita g=1 valutato in considerazione
dello sviluppo nell’intorno 1+dg (De Bartolo et
al.. 2003) ossia:

InC (e)= hm[ Em{ Nzo(s =

Le espressioni (A.1 e A.2), (A3) e (A.5) permet-
tono anche di risalire allo spettro multifrattale
fla,) con I"ausilio delle trasformate di Legendre
(3) (Yamaguti e Prado, 1995). Infatti. in conside-
razione della (2) & possibile, mediante semplice
sostituzione, riscrivere la sequenza degli esponenti
di massa come:

(A.4)

(A.5)

ol S got )

2 ] (A.6)

Nella (A.6), I'unica parte dipendente dal parame-
tro ¢ ¢ costituita dal In[-]. e, pertanto, se indichere-
mo detta parte con T, applicando le note regole di
derivazione al solo argomento avremo:

(A7)

In accordo quindi con le trasformate di Legendre
(3), si puo scrivere:

. InA
=lim

e=0 |

a, (A.8)

ne’

e allo stesso modo, introducendo la differenza W =
T-¢A, ottenere:

fla, )—hmi s

(A.9)
e—=U ln

Pertanto in considerazione delle relazioni (A.8
e A9) & possibile determinare direttamente lo
spettro multifrattale f(c,) avvalendosi delle sole
relazioni (A3) e (A5).

Per quanto concerne la procedura numerica su
cui si basa il calcolo dell’integrale di correlazione
generalizzato (relazioni A.1 e A.2) De Bartolo et
al. (2003. 2005) hanno introdotto una partizione
esponenziale della base tra la minima e la massima
distanza tra i net-points oggetto di misura, che si
avvale della seguente legge di potenza:

M=1,..M

max ?

M
e=¢_0b

min

(A.10)

in cui g, si calcola come segue: ad ogni punto
dell’insieme si associa la minima distanza dagli
altri punti, il pit grande di tali valori minimi rap-
presenta ¢,,,. Sempre nella (A.10) b rappresenta la
base della distanza tra i punti ed & espressa da:

b _ £ — ; "“fma\‘
Ell"u.ll

in cui g, rappresenta la massima distanza tra tutte
le coppie di punti e M, il numero massimo di
partizionamenti.

(A.11)
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